Enzymatic Process for Biodiesel and Bio-based Material Production

Currently, biodiesel is commonly made from soybean oil in the U.S., rapeseed, sunflower or soybean oil in the EU, and palm oil in Southeast Asia. However, in the event of the food vs. fuel conflict, many are shifting into the exploration of non-edible oil feedstocks.

The conventional biodiesel production technique is transesterification by the chemical approach, which is a well-developed technology that has been commercialized worldwide. Though great efforts have been placed in the improvement of this process, it still suffers from high production costs and environmental concerns, e.g., waste water, chemical disposal and low quality of the glycerol co-product. Because most chemical approaches are comprised of the alkaline process, the production is limited to only the transesterification reaction. It cannot handle conversion of free fatty acid (FFA) effectively and oftentimes leads to soap formation. On the other hand, the acid process is limited to only the esterification reaction, i.e., conversion of FFA into biodiesel, because the rate of transesterification is too slow to make it feasible for industrial production. Therefore, given an oil source that contains a large amount of FFA, only a combination of the acid and alkaline processes can fully utilize the feedstock oil. As a result, capital investment is doubled, as well as the operating cost, leading biodiesel to cost higher than petroleum diesel. Without subsidies, whether explicit or implicit, businesses running on this kind of technology will find it hard to survive in the long run.

Since the time biofuel was produced, its price has been higher than that of fossil fuel, leading the general public to prejudice against its feasibility. An examination of the common cost allocation for biodiesel production through the chemical approach shows that 70-90 percent is allocated for the feedstock, 20-25 percent for operating cost and 5 percent for other fees. Thus, cost allocated for the feedstock is prohibitive to the product. In order to reach a reasonable budget, this value would have to be decreased to 50 percent or less.

Enzymatic Process

A new enzymatic transesterification process (ET Process, patented), has been developed to address prevailing concerns about biodiesel production technology. The process consists of two reactors: a primary reactor and a trim reactor. The alcohol reactant, oil and inert solvent are mixed well with recycled biodiesel before it is fed into the primary reactor. The reactor can have a packed bed or CSTR design. The reactor outlet is connected to an evaporator, where the unreacted alcohol, inert solvent, and water are evaporated. The residual unreacted oil, biodiesel and glycerol are then separated into two liquid layers. The upper layer is crude biodiesel and the lower layer is crude glycerol, which contains a trace amount of solvent and alcohol.

Green Technology

Multiple drivers for cleaner, sustainable energy necessitate a deviation from the traditional methods of energy production. A broader and more open perspective on the possibilities brought about by a change in strategy is already beginning to shape new and better technologies. In the conventional refinery process, a thermal or catalytic cracking method is applied, whereby the raw material is broken down and reformulated to obtain the product. This kind of approach normally involves many side reactions and results to some undesired products. To obtain a product with the same properties as, say, diesel, an alternative method is to apply simple reformulation or re-synthesis that results to clearly defined pure products, such as is the case with the traditional or enzymatic biodiesel production.

The enzymatic approach for biodiesel production is the exact example of "green chemistry". Admittedly, it is known to have disadvantages, such as high enzyme cost, low yield, short catalyst lifespan and long reaction times. The advantage of the enzymatic process is that it is environmentally friendly, meaning that there is no chemical discharge and waste water, due to the fact that there is no need for water washing. The typical enzymatic approach can simultaneously perform esterification and transesterification for FFA and triglyceride, respectively. This is especially useful for oil sources that cannot immediately be processed, such as those in storage for a period of time. The enzymatic process is also much preferred because of its mild reaction conditions. Thus, the energy requirement to produce liquid biofuels via the enzymatic approach is lower.

Using an enzymatic approach to produce biodiesel is not a new subject as the idea has been postulated for approximately 30 years. The slow pace of progress can be attributed to the prevailing standard of using a solvent-free system. Methanol and ethanol are known to be relatively insoluble in oil and to deactivate the lipase. However, another important and overlooked matter is the deactivation of the lipase by the glycerol droplet. It means that even though a solvent is employed together with methanol or ethanol in oil, if the glycerol droplet is separated in a second phase, the lipase will still be gradually deactivated. This implies that a biodiesel production system using an enzymatic process should have the reaction carried out in a homogenous solution. The discovery, first made in early 2000's, led to a breakthrough.

Need More Help ? Contact Us